If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+7.2X-36=0
a = 1; b = 7.2; c = -36;
Δ = b2-4ac
Δ = 7.22-4·1·(-36)
Δ = 195.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7.2)-\sqrt{195.84}}{2*1}=\frac{-7.2-\sqrt{195.84}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7.2)+\sqrt{195.84}}{2*1}=\frac{-7.2+\sqrt{195.84}}{2} $
| x×9=45 | | 4x^5+4x^4-13x^3-6x^2+9x+2=0/ | | |3x|=x+8 | | 3.2/x=48/75 | | (x+⅔)(x-½)=0 | | t÷6-2=16 | | 6x-19=7x+7 | | (X+1)+(x+4)=(2-x)(x+2) | | 3.2x=48/75 | | X+(2x)+(2x-20)+(2x-20/4)=140 | | x*3=972 | | 2(x-3)+5x(x-1)=5x2 | | x=2+0.5(1+0.5x) | | 3(2x-4)=5(3x+2)-3 | | 30-2y=36 | | 0=4x2-6x | | x/10+4=1 | | 6y+13=23 | | 450p+135=2300 | | 3/1=w | | s*6+7=207 | | 2z/9+3=2 | | 4(2y-3)=1 | | 3x-9=5416x | | (z+2)(z^2-4z+8)=0 | | a*7+38=220 | | X^4+20-9x^2=0 | | (n/68)=(1/12) | | (1/12)=(n/68) | | (0.09+x)^7=1 | | 2‧5^2x=8 | | 64+4w=+5 |